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Abstract—Given that the global water system is deteriorating
and the supply and demand are very dynamic, smart ways to
improve the water management system are needed so that it
becomes more efficient and to extend the services provided to
the citizens leading to smart cities. One of many water related
problems that can be addressed by the Internet of Things is
anomaly detection in water consumption. The analysis of data
collected by smart meters will help to personalize the feedback to
customers, prevent water waste and detect alarming situations.
Water consumption data can be considered as a time series.
Time series anomaly detection is an old topic but in this work
we attempt to examine which techniques suits better for water
consumption. We examine two very well-known methods for time
series anomaly detection: an ARIMA-based framework anomaly
detection technique which selects as outliers those points no
fitting an ARIMA process and also a technique named HOT-
SAX which represents windows of data in a discrete way and
then discriminates them using a heuristic. They are both very
different in nature but the true positive analysis is excellent. The
challenge remains in removing the false positive from the picture.

Index Terms—anomaly detection, smart cities, water manage-
ment, intelligent data analysis techniques

I. INTRODUCTION

The global water system is deteriorating due to aging and
stress. Furthermore, the increase in water demand is leading
to infrastructure insufficiency.

Every year, more than 32 billion cubic meters of treated
water from urban supply systems around the world are lost,
half of which occurs in developing countries [1].

The dynamics of the supply and demand of water make
it critical for governments to evaluate and better manage the
water supply, requiring a smarter approach to deliver improved
outcomes across the water management lifecycle. This is
where the Internet of Things (IoT) takes center stage.

Thanks to the IoT, the interconnection and communications
capabilities that are nowadays embedded in almost every-
thing (places, things, people) allow to share information in
a non-intrusive and efficient way. Through data analytics such
information can be used to extract the knowledge that is
needed to take immediate action in decisions that involve city
management. When the urban infrastructure evolves using IoT,

a smart city emerges. Smart cities are efficient in the way they
use the resources, that includes energy [2], [3] and water.

The deployment of a smarter approach to water management
will solve some of the fundamental flaws that are provoking
the worlds water crisis.

Smart water meters periodically collect measurements of
water consumption. This data, stored as time series, opens up
a wealth of opportunities for water providers when empowered
by data mining techniques. Anomalies in water consumption
time series are particularly interesting as they lead to reveal
leaks, device/meter failure, detect illegal water use, warning
situations and peak water use patterns in order to provide
personalized feedback to customers and facilitate capacity
planning and policy implementation.

II. RELATED WORK

The state of the art academic research includes the use of
machine learning algorithms in tasks related to all the steps
in the urban water process: from the configuration of the
architecture of the network to managing the network using
prediction and anomaly detection.

The division of large water systems enables better wa-
ter management by improving efficiency and safety through
strategic rule implementations. For such task using manual or
empirical approaches is outdated since the several physical
and hydraulic features that are available nowadays thanks to
the IoT can serve as precise attributes. In [4] graph clustering
is proposed in order to optimally create the District Metered
Areas (DMAs). The status of the boundary valves and their
location at DMA entrances is also optimized in the mentioned
work. Their process is based on three algorithms: Genetic
Algorithms (GAs), Particle Swarm Optimisation (PSO), and
Soccer League Competition (SLC).

Having defined the network according to data, further anal-
ysis of the information that is gathered by smart meters can be
done in order to forecast water demand. Water demand fore-
casting is of utmost importance for the management of Water
Distribution Systems (WDSs) due to its close relationship with
the operational and economic aspects of water distribution, and
also because this demand introduces high levels of uncertainty
in WDS hydraulic models. When developing accurate forecast-
ing models from smart meter readings, a preprocessing study978-1-5386-4980-0/19/$31.00 ©2019 IEEE



that includes feature selection or data transformation must be
done. Principal Component Analysis (PCA), Self-Organizing
Maps (SOMs) and Random Forest (RF) algorithms ares tested
in [5] for exploring weather, social and economical variables.
Those feature selection techniques are used in order to select
the proper variables to build hourly regression models. Also,
Discrete Wavelet Transform (DWT) is applied to transform
the data in [6] in order to carry out a monthly consumption
prediction using nonlinear techniques such as Artifical Neural
Networks (ANN).

As water distribution networks present wear and tear, ef-
ficient real-time assessment and monitoring is crucial for an
optimal functioning. Damages are most often manifested as
pipe-failure incidents and lead to significant levels of non-
revenue water (typically in the range 20%-30%) [7] . Tradi-
tional approaches average periodic consumption and compare
this to the one from a corresponding past period in order to
find anomalies. This methodology does not adapt to changes
in the time series, does not consider drifts and it can not be
used in real time. The real-time operability of the methods
for anomaly detection is important since the decision-making
process is sometimes carried on in a real-time way. Given that
water consumption measurements per metering unit can be
considered as times series, change-point methods are suitable
for the detection of anomalies. In [7], using such methods
allow to distinguish the kind of anomaly that is being detected:
a discontinuity in the signal (a break in the consumer’s water
consumption patterns) or an unusual increase in the signal
(waterloss incidents). Probabilistic outlier detection has also
been explored [8] in water management scenarios. It requires a
probability distribution for data, in which data points assigned
a low probability are judged as outliers. This probability
distribution can be represented by a Deep Neural Network
(DNN) that is trained on normal data. In [9] an approach based
on using GAs to find the best neuronal network architecture
for a given dataset is introduced. In order to reduce the false-
negative ratio, they also use exponentially weighted moving
average smoothing, mean p-powered error measure, individ-
ual error weight for each tag values and disjoint prediction
windows.

Heatwave events in temperature time series have been
studied in [10] and since they can also be considered anoma-
lies, we find their approach very interesting. The authors
propose a multiresolution quantile (MRQ) approach, extending
a variation of the common SAX methodology (that is further
explained in Section III) and computing the quantiles for each
level of resolution in the time series. MRQ starts dividing the
series into segments of equal length using piecewise aggregate
approximation (PAA). Then, SAX runs on the quantiles of
each segment of the data. Finally, the differences between
upper and lower quantiles at each resolution level is computed
by a lower-bounding distance measure. Anomalies (heatwave
events) could then be detected based on the persistence of
minimum distances at various time-based resolution levels.

III. METHODOLOGY

Anomaly detection for time series has been widely studied
in the past. It is our duty to discover the weak and strong
points of methods from different nature to find anomalies
specifically in water consumption time series in order to test
their goodness.

For this task, we propose a two-steps scheme that firstly will
extract outliers and abnormal patterns using the individual time
series properties of the data and secondly, using the features
extracted by such models will try to classify them thanks to
the annotated classes. The second step adds extra value to
the process since uses knowledge in order to discard false
positives, which are very common in this area.

A. Step 1: Individual time series anomaly detection

We have tested two different approaches: an ARIMA based
algorithm and a heuristic that uses Symbolic Aggregate Ap-
proximation (SAX) for finding time series discords.

• ARIMA
In order to locate the time series outliers, the ARIMA
based framework described in [11] is used. Here, five
types of outliers are considered: “AO” additive outliers,
“LS” level shifts, “TC” temporary changes, “IO” innova-
tive outliers and “SLS” seasonal level shifts.
Let zt be an ARMA model, then we assume that our
series yt, which contains m outliers can be described as:

yt = zt +

m∑
j=1

wjLj(B)Itj ,

where I(tj) is an indicator variable with value 1 at the
time tj , that is when the outlier Lj(B), with weight wj

arouses.
For further information about how each of the outliers is
defined, please check the implementation manual [12] or
the original paper where this methodology was proposed
[11].

• Heuristically Order Time series using SAX (HOT-SAX)
The large volume of data that is collected by means of
IoT can be aggregated and represented in efficient and
higher-granularity ways. The idea is to create sequences
of patterns and data segments that occur in large-scale IoT
data streams. In order to reduce the number of data points
in a series and create a representation, segmentation and
representation methods are advised [13].
Among all the techniques that have been used to reduce
the number of points of a time series data, Symbolic
Aggregate Approximation (SAX) has specially attracted
the attention of the researchers in the field.
Using SAX, a time series is normalised and then dis-
cretized by first obtaining a Piecewise Aggregate Approx-
imation (PAA), that is dividing the original data into the
desired number of windows and calculating the average of
data falling into each window. Secondly, predetermined
breakpoints are used to map the PAA coefficients into



symbols or letters creating words. That is, each of the
windows is a word.
In that sense, it is possible to use a heuristic search for
finding the words that appear to be less frequent in our
time series and define such segments as anomalies [14].

B. Step 2: Anomaly and discord classification

Anomalies obtained using each of the methods are different:
ARIMA provides specific points (see red points of column 1 in
Fig. 2) and the outlier type and HOT-SAX provides a series of
points that construct a subseries (see red subseries of column
2 in Fig. 2).

At this point, we want to use algorithm that determine if
some combination of points or specific subseries are indicators
of the anomalies that so far have been annotated.

• Association Rule Learning for ARIMA framework
With the aim of trying to differentiate which types of
outliers correspond to anomalous behaviors that produce
breakdowns and which correspond to normal fluctuations
in consumption, we have tested the ARIMA algorithm
in the set of consumption series, differentiating two
classes: those in which breakdowns are contained and
those in which they are not (we consider that there is
a period without breakdowns as long as there is not a
breakdown in a timeframe of at least two months with
respect to the period analyzed). As a result of applying
the ARIMA agloritm, a set of outliers of different types
(described previously in section 3.1) were obtained for
periods with breakdowns and without breakdowns. An
Association Rule Learning Algorithm was applied to
these sets of outliers with the aim of studying if the type
of outliers detected by the algorithm is representative for
each class. In order to carry out a more exhaustive study,
the Association Rule Learning Algorithm was applied on
different size sets: taking only the outlier closest to the
breakdown, the two closest, the three closest etc.

• Subseries classification using Random Forest for HOT-
SAX discordances
As we set the parameters of HOT-SAX algorithm to find
n discordances per series we decided to separate series
that lead to anomalies and series which does not lead
to anomalies and apply the algorithm. In that case, we
obtained n subseries per series that can be classified as 0
(belonging to normal) or as 1 (leading to anomaly).
After that, we apply a random forest classifier [15] in
order to fit a model that discriminates between subseries
that indicate a future anomaly and subseries that do not.

C. Metrics

Accuracy is simply the ratio of number of correct predic-
tions to the total number of input samples, without making any
difference between correctly classified anomalies and correctly
classified not anomalies.

Due to the nature of our problem, we are going to use
diagnostic accuracy metrics in order to measure the agreement

between the predicted class (abnormal or normal) and the
annotated anomalies that have occurred.

We have decided to go further than just reporting accuracy
since for the special case under study it is much more essential
to find the real abnormal situation than to claim a abnormality
when actually is not.

The 2 x 2 contingency table gathers the index test results
on one side and those of the reference standard on the other.

TABLE I
CONTINGENCY TABLE DEFINITIONS

Anomaly Not anomaly

Anomaly predicted True positive (TP) False positive (FP)
Not Anomaly predicted False negative (FN) True negative (TN)

Sensitivity (’positivity in anomaly”) is the proportion of
subseries which belong to the abnormal one and give positive
test results. Shortly, right classified abnormal subseries.

Sensitivity =
TP

TP + FN

Specificity (’negative in anomaly”) refers to the proportion
of subseries that belong to the normal one and give negative
test results. Shortly, right classified normal subseries.

Specificity =
TN

TN + FP

The accuray of a test to discriminate abnormal from normal
cases is sometimes evaluated using Receiver Operating Char-
acteristic (ROC) curve analysis. The area under the ROC curve
(AUC) determines the ability of the model to discriminate
between the normal and abnormal subseries.

For our problem is specially important to obtain a high
sensitivity. This means that abnormal data should not be
ignored. Even if some false positives are encountered it is
way more important to detect all abnormal situations.

IV. USE CASE AND EXPERIMENT RESULTS

Located in Spain, region of Murcia has designed and
deployed a water management platform to monitor and take
decision over urban water distribution systems integrated in
a smart city approach. The pilot combines different sources
of information including smart metering system, company’s
SCADA with real time information about pressures (see Fig.1),
water quality, and GIS system providing infrastructure deploy-
ment and maintenance historical records, as data from external
sources (e.g. weather, financial conditions, seismic activity).

Over this baseline several big data analytics components
will be deployed that will share common data models and
interoperability capabilities.

The analytic task that is presented in this work focuses
on anomaly detection, having a wide range of applications
as fraud detection, surveillance, diagnosis, data cleanup, and
predictive maintenance.



Fig. 1. SCADA real time pipe information

The platform gathers data from 40000 smart meters that
mainly belong to factories and buildings (owners’ communi-
ties). Every data point is gathered with a timestamp, that is, it
has the form of a time series.

A. Experiments

We are given a very reduced annotated dataset of anomalies.
This task is developed nowadays by a human and it is done
exclusively on the users that consume the most, which are
some factories. Since the goal of this study is to create a
baseline in order to develop a tool able to warn an expert
about possible abnormal situations, we consider that finding an
outlier close to the real anomaly is a success. This is because
at this point, the expert will be able to validate the finding and
take further actions.

That way, we have tested the algorithms on the 30 time
series which were anotated. Originally, consumption is an
accumulated value and the measurements are irregular. We
have aggregated consumption each 2 hours and we have
considered 1 month measurements in order to carry out the
analysis. In average and after the aggregation phase, 400
observations per water meter are used in order to detect the
anomaly.

The first step results of analysing 3 water meters are shown
in Fig. 2. In such figure, rows represent the water meter and the
2 columns are showing the results using both previously stated
methods. In all 6 graphs, the vertical red line represents when
the human expert was able to find the anomaly. In the graphs
relative to the ARIMA framework outliers are represented
with red dots, and while the original series is grey, blue is
the corrected one (the values that are selected as outliers are
corrected, but this does not interest us). In the graphs relative
to HOT-SAX, the original series is blue and the most abnormal
data sequences are highlighted in red.

Both tested approaches seem to be good at detecting the
anomalies: 90 % are found using the so called ARIMA-
framework, and 80 % using HOT-SAX. However, both ap-
proaches present a high rate of false positives, that is, they find
anomalies which have not been stated as so by the expert. This
way, the second step of our methodology is not only justified
but also necessary.

For analysing HOT-SAX results, we have stated to find 5
discord subseries of length 20 per time series. Using 70 %
of the subseries as training and 30 % as test we have been

able to obtain a 76 % accuracy when classifying them. More
important than that, sensitivity is 86 % and specificity is 72
%. All this values can be calculated from Table II.

TABLE II
CONTINGENCY TABLE RESULTS

Anomaly Not anomaly

Anomaly predicted 12 9
Not Anomaly predicted 2 23

Finally, the results obtained using the Association Rule
Learning are inconclusive, mainly due to the lack of data
because the more outliers we take near the breakdown the
fewer examples we obtain. This fact is given for obvious
reasons because differently to HOT SAX algorithm, that
always finds discordances, in ARIMA algorithm outliers are
not always detected and even in case of detecting them
the number of outliers obtained varies considerably. This
inversely proportional relationship makes it very difficult to
get consistent results, and consistently the results obtained, in
addition to showing few significant differences between the
series with and without breakdowns, lack reliability. However
for future work the infrastructure deployed for this study can
be very useful in databases with a higher number of data,
in which is possible to extract relevant information that can
clarify wich factors determine the causes of breakdowns .

V. CONCLUSIONS AND FUTURE WORK

In this preliminary study we have tested how two very
different algorithms in nature can be used to discover anoma-
lies on water consumption time series. To our knowledge,
this is the first time that a combination between association
rules and time series anomaly detection is used for discarding
false anomalies, which are very common in this problem. We
consider that our work is a step forward towards automatic
water management in smart cities. In many utility companies,
anomaly detection is either neglected or done by a technician
who normally is unable to check all smart meters due to the
huge amount of consumers that are connected to the network
and the high volume of data that is generated. This is also
the case of our particular pilot, where a person does this work
manually having to reduce the search dataset to a subset of
very high consumers and also being unable to anticipate or to
detect the anomaly in real time.

Since the dataset used for testing the models is obtained as
above described, further work needs to be done. In that sense
we propose the following:

• Select other algorithms based on a machine learning
approach instead of focusing just on time series and
compare results.

• Design an experiment which tests several anomaly de-
tection models and finds the best one through expert
validation. That is, the expert validates the findings of
the algorithms and the outcomes are stored in order to
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Fig. 2. Anomaly detection results on 3 smart meters

select the best one for the pilot case in particular and for
the problem in general. That can be done by incorporating
other publicly avaiable water consumption datasets.

• Elaborate a friendly graphic user interface that can be
understandable and usable by the technician in order to
validate the previous.

• Analyze and develop retrofit techniques which can be
used in order to improve or change dynamically the
model parameters (retrain) using the expert input in order
to achieve a fully automatic procedure.

• Use Big Data frameworks in order to facilitate the anal-
ysis on real time.
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